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a b s t r a c t

If the coefficients in a Fourier cosine series, f ðxÞ � fN ¼
P1

n¼0an cosðnxÞ, decrease as a small
negative power of n, then one may need millions of terms to sum the series to high accu-
racy. We show that if the an are known analytically and have a power series in 1=n, then it
is straightforward to approximate f ðxÞ as a series of what we shall the Lanczos–Krylov (LK)
functions. (We describe the similar methodology for sine series; general Fourier series are
merely the sum of a cosine series with a sine series and thus are implicitly handled, too.)
For cosine coefficients that involve only even powers of n and sine coefficients that are
functions of odd powers of n, the LK functions may be expressed in terms of Bernoulli poly-
nomials. The LK functions for cosine coefficients involving odd powers of n and for sine
coefficients in even powers of n are not known explicitly; these are also known as ‘‘Clausen
functions”. We provide rapidly convergent series to compute these Clausen functions to
high accuracy. Our method includes the ‘‘endpoint subtraction” ideas of Lanczos and Kry-
lov, but is more general. The sum

P1
n¼1ð�1Þnþ1ð1=ðnþ kÞÞ cosðnxÞ, where k > 0 is a constant,

arises in phase transitions in absorbed monolayers on metal surfaces. It is easily summed
by our method, which correctly incorporates the logarithmic singularities at x ¼ �p.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

1.1. The basic idea

Slowly-convergent Fourier series are a widespread bain in science and engineering [25]. A nasty exemplar is
vðx; kÞ �
X1
n¼1

ð�1Þnþ1 1
nþ k

cosðnxÞ ð1Þ
which arises in the phase transitions of absorbed submonolayers on metal surfaces [40], and is also the real part of a special
case of the ‘‘Lerch zeta-function” in mathematics. If the series is truncated after the N-th term, the error falls only as fast as
1=N over the entire interval except in zones of width Oð1=NÞ near x ¼ �p where the error is always Oð1Þ, the Gibbs
Phenomenon.

Much effort has been devoted to defeating the Gibbs Phenomenon as again reviewed most recently in [25]. Individual
articles on accelerating Fourier series include [20,19,18,17,41,9,5,49,7,14,10–12,24,23,4,1,3,2,21,28,27,26,22,43–
46,16,29,30,36–39,42,47,48,50,51]. It is obviously impossible to summarize such a great body of work without writing a
lengthy review article. Install, we shall relate our method to existing work as we proceed.
. All rights reserved.
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Our key assumption is that the Fourier coefficients an of the Fourier series for f ðxÞ have a power series in inverse powers of
n as n!1:
an � ð�1Þnþ1
X1
k¼1

nkn�k; n!1 ð2Þ
(The alternating sign is convenient in this implicit definition of the nk because we assume that the slow convergence is
caused by singularities at x ¼ �p, in which case the Fourier coefficients alternate in sign, at least asymptotically.) It is
not necessary that the series be convergent (although it is for vðx; kÞ); an asymptotic-but-divergent series will do just
as well. Specializing to a cosine series for the moment, choose M to be a large but otherwise arbitrary positive integer
and write
f ðxÞ ¼ sM þ rMðxÞ ð3Þ
where sM is the usual partial sum
sM ¼
XM

n¼1

an cosðnxÞ ð4Þ
and the ‘‘tail” is
rMðx; kÞ ¼
X1

n¼Mþ1

an cosðnxÞ ð5Þ
Inserting the asymptotic approximation only in the ‘‘tail” rMðxÞ gives
f ðxÞ ¼ sM þ
X1

n¼Mþ1

ð�1Þnþ1
X1
k¼1

nkn�k

( )
cosðnxÞ ¼ sM þ

X1
k¼1

nk

X1
n¼Mþ1

ð�1Þnþ1 1
nk

cosðnxÞ
( )

¼ sM þ
X1
k¼1

nkfCkðxÞ � Ck;MðxÞg ¼ sM �
X1
k¼1

nkCk;MðxÞ
( )

þ
X1
k¼1

nkCkðxÞ

¼
XM

n¼1

an � ð�1Þnþ1
X1
k¼1

nk

nk

( )
cosðnxÞ þ

X1
k¼1

nkCkðxÞ ð6Þ
where we have defined
CkðxÞ ¼
X1
n¼1

ð�1Þnþ1n�k cosðnxÞ ð7Þ
and Ck;MðxÞ is the partial sum of these series,
Ck;MðxÞ ¼
XM

n¼1

ð�1Þnþ1n�k cosðnxÞ ð8Þ
The crucial point is that these ‘‘Lanczos–Krylov” (LK) functions can be evaluated in closed form either as Bernoulli polyno-
mials (for even k) or by the method derived in the appendix. It is only necessary for the asymptotic approximation to the
Fourier coefficients to be accurate for n > M where M can be chosen as large as necessary.

The method is similar for sine series except that we must use the ‘‘sine” LK functions SkðxÞ defined below.
In practice, the series in k must be truncated. If the sum in (6) includes the k ¼ K term, then the leading Fourier coefficient

of the first neglected term is
nKþ1
1

ðM þ 1ÞKþ1 ð9Þ
Obviously, the error can be made arbitrarily small by choosing sufficiently large M and K. To avoid the bother of computing a
large number of the LK functions CkðxÞ, we recommend choosing M � K , that is, using a truncation in sM and Ck;M which is
much larger than the truncation K in the order of the LK functions. (In the example below, for example, we chose K ¼ 4 and
M ¼ 50.)

If the series for an in powers of 1=n is convergent, then (6) is exact. If the series is only asymptotic, then the approximation
for f ðx; kÞ is asymptotic, too. However, because M is arbitrary where M is the cutoff between explicit summation and the use
of the asymptotic expansion for an, the error for f ðxÞ can be made as small as we wish by choosing sufficiently large M.

There is no loss of generality in discussing cosine and sine series separately because an arbitrary function f ðxÞ can always
be split into its parts which are symmetric and antisymmetric about the origin via
SðxÞ � 1
2
ðf ðxÞ þ f ð�xÞÞ; AðxÞ � 1

2
ðf ðxÞ � f ð�xÞÞ ð10Þ
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where even parity means Sð�xÞ ¼ SðxÞ for all x and AðxÞ is antisymmetric in the sense that Að�xÞ ¼ �AðxÞ for all x. Then SðxÞ
and AðxÞ can be approximated by cosine and sine series respectively:
Table 1
Lanczos

S1ðxÞ

C2ðxÞ

S3ðxÞ

C4ðxÞ
SðxÞ ¼ a0 þ
X1
n¼1

an cosðnxÞ; AðxÞ ¼
X1
n¼1

bn sinðnxÞ ð11Þ
where
f ðxÞ ¼ SðxÞ þ AðxÞ ð12Þ
2. Non-periodic f ðxÞ and Bernoulli polynomials

In many applications, the Fourier series converges slowly only because f ðxÞ is not a periodic function. The Fourier series,
which is composed entirely of functions that are individually periodic with period 2p, is forced to converge to the piecewise
smooth periodic function f̂ ðxÞ defined by
f̂ ðxÞ �
f ðxÞ; x 2 ½�p;p�
f ðmodðxþ p;2pÞ � pÞ; jxj > p

�
ð13Þ
which is to say that f̂ ðxÞ is extended to jxj > p by the periodicity condition f̂ ðxþ 2pÞ ¼ f̂ ðxÞ for all x. The periodized function
f̂ ðxÞ has discontinuities in the function itself or its derivatives at x� p which force its Fourier series to decay very slowly with
n.

Lanczos and Krylov [6,31,32] independently observed in the mid-twentieth century that the Fourier coefficients of such
‘‘piecewise analytic” functions have a ‘‘Fourier coefficient asymptotic expansion” (FACE) [34,35,13] in inverse powers of n.
an �
1
p
XJ

j¼0

ð�1Þnþj f ð2jþ1ÞðpÞ � f ð2jþ1Þð�pÞ
n2jþ2

� �
þ Oðn�ð2 Jþ4ÞÞ;n!1; fixed J ð14Þ

bn �
1
p
XJ

j¼0

ð�1Þnþ1þj f ð2jÞðpÞ � f ð2jÞð�pÞ
n2jþ1

� �
þ Oðn�ð2Jþ3ÞÞ;n!1; fixed J ð15Þ
Note that only even powers appear in the series for the cosine coefficients and only odd powers of n in the expansion of the
sine coefficients.

It was known to Lanczos and Krylov that these LK functions are piecewise shifted Bernoulli polynomials. The first few
cases are given explicitly in Table 1. The general form is
S2K�1ðxÞ �
X1
n¼1

ð�1Þnþ1n�ð2K�1Þ sinðnxÞ ð16Þ

¼ ð�1ÞK 22K�2p2K�1

ð2K � 1Þ! B2K�1
xþ p

2p

� �
ð17Þ

C2KðxÞ �
X1
n¼1

ð�1Þnþ1n�2K cosðnxÞ ð18Þ

¼ ð�1ÞK 22K�1p2K

ð2KÞ! B2K
xþ p

2p

� �
ð19Þ
Fig. 1 illustrates a point emphasized by Lyness [34], which is that the FACE is usually an asymptotic but divergent expansion.
The function f̂ ðxÞ in this example is generated by periodizing a function f ðxÞ which is analytic everywhere except for singu-
larities outside x 2 ½�p;p�. The coefficients in the FACE show the factorial growth with order which is typical of divergent
asymptotic series:
–Krylov functions that are Bernoulli polynomials.

¼
P1

j¼1
ð�1Þnþ1

n sinðnxÞ
¼ x=2

¼
P1

j¼1
ð�1Þnþ1

n2 cosðnxÞ
¼ � 1

4 x2 þ p2

12

¼
P1

j¼1
ð�1Þnþ1

n3 sinðnxÞ
¼ � 1

12 x3 þ p2

12 x

¼
P1

j¼1
ð�1Þnþ1

n4 cosðnxÞ

¼ 1
48 x4 � p2

24 x2 þ 7p4

720
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Fig. 1. Isolines of the base-10 logarithm of the error in approximating the n-th cosine coefficient by the Fourier Coefficient Asymptotic Approximation of a
piecewise analytic function, f ðxÞ ¼ 1=ð1� ð100=½121p2�Þx2. The thick black curve with disks shows the optimum truncation order mðnÞ of the series for an

where ‘‘optimal” means that the expansion up to including n2m gives the smallest error in approximating an for that value of n.
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f ðxÞ � 1
1� 0:826x2=p2 ) an �� 11:12=n2 þ 677:5=n4 � 1:373E5=n6 ð20Þ

þ 5:843E7=n8 � 4:262E10=n10 þ 4:751E13=n12

� 7:509E16=n14 þ 1:598E20=n16 � 4:403E23=n18 þ . . .
For fixed n, the error in approximating an by an inverse power series of the form of (2), truncated at the M-th term,
an � ð�1Þnþ1
XM

k¼1

nkn�k ð21Þ
decreases with increasing M, reaches a minimum at the ‘‘optimal truncation”, M ¼ Mopt , and then diverges to1 as M !1. In
the different limit that n!1 for a fixed number of terms M in the asymptotic series, f̂ ðxÞ, however, the error in approxi-
mating the Fourier coefficients by the FACE falls as Oðn2Mþ2Þ. Equivalently, the error in approximating f̂ ðxÞ by a fixed sum
of CkðxÞ falls at the same rate over the entire interval.

3. How to compute the Lanczos–Krylov functions which are not Bernoulli polynomials (Clausen functions)

The non-polynomial LK functions are known also as the ‘‘Clausen functions” defined by
C2mþ1ðxÞ ¼ �Cl2mþ1ðxþ pÞ; S2mðxÞ ¼ Cl2mðxþ pÞ; ð22Þ
where the definitions are those of Linton and Thompson [33].
The lowest non-Bernoulli LK function is given by the explicit formula
C1ðxÞ ¼
X1
j¼1

ð�1Þnþ1

n
cosðnxÞ ¼ logf2 cosðx=2Þg � p 6 x 6 p ð23Þ
The next Clausen function is
S2ðxÞ �
X1
n¼1

ð�1Þnþ1 1
n2 sinðnxÞ ¼

Z x

0
C1ðyÞdy ¼

Z x

0
logð2 cosðy=2ÞÞdy ð24Þ
as follows by-term-by-term integration of the cosine series for C1. Unfortunately, this integral cannot be done in closed form.
Fortunately, the integrand does have the rapidly convergent expansion
logð2 cosðy=2ÞÞ ¼ logðp� yÞ þ
X1
j¼1

qjðy� pÞ2j ð25Þ
which can be obtained in the Maple symbolic language package by the line y :¼ wþ Pi; J :¼ 12; ls :¼ seriesðlogð2 	 cosðy=2ÞÞ;
w;2 	 J þ 1Þ; or by the analytic formula
qj ¼ ð�1Þj B2j

2jð2jÞ! ; j ¼ 1;2; . . . ð26Þ
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Because the function logð2 cosðy=2ÞÞ has singularities at �ð2mþ 1Þp for all integers m, it follows that the radius of conver-
gence of the expansion about y ¼ p is 2p. Because the convergence-limiting singularity is a logarithm, it follows that the
series coefficients are asymptotically proportional to, noting the qj is the coefficient of the square of the j-th power of
ðy� pÞ, those of a logarithmic series with a radius of convergence of 2p, that is,
Table 2
Coeffici

j

1
2
3
4
5
6
7
8
9
10
11
12

Table 3
Non-Be

C1ðxÞ

S2ðxÞ

C3ðxÞ

S4ðxÞ
qj � Qð2pÞ�2j
=j ð27Þ
where Q is a constant. This is confirmed in Table 2, which gives the coefficients themselves and also shows (in the rightmost
table) that the proportionality constant Q is one.

We can numerically integrate this series term-by-term to approximate S2. Because all the LK functions have definite par-
ity, that is,
Skð�xÞ ¼ �SkðxÞ; Ckð�xÞ ¼ CkðxÞ ð28Þ
it is only necessary to apply the term-by-term integration on the restricted interval x 2 ½0;p� because the LK functions can be
evaluated for negative x by computing them for positive x and then applying the parity identities (28). It follows that the
series at worst must be used a distance p from the expansion point. Truncating the series after the J-th term, the first ne-
glected term at worst is about 4�ðJþ1Þ=ðJ þ 1Þ. If we stop after J ¼ 12, the highest term listed in the table, then the first ne-
glected coefficient has a magnitude of only 1:1
 10�9. The error in the integrated series is even smaller.

Non-Bernoulli functions of higher k can be obtained by repeated integration. One complication is that each integration adds
another constant of integration;S4ðxÞ is only determined to within the addition of an arbitrary quadratic polynomial, for exam-
ple. However, symmetry with respect to the origin implies that the arbitrary polynomial in the SkðxÞ must contain only odd
powers of x while CkðxÞmust have a polynomial part with only even powers. The coefficients of these polynomials of integra-
tion may be determined by summing the Fourier series and/or derivatives of the Fourier series to obtain the necessary bound-
ary conditions at x ¼ 0 and x ¼ p. For example, we first constructed the double integral of logðp� xÞ so that the resulting
combination of logarithms and polynomial was zero at the origin, and then added the constant

P1
n¼1ð�1Þnþ1

=n3 ¼
ð3=4Þfð3Þ ¼ 0:90154267736969572, which is the value of C3ð0Þ (Table 3).
ents for logð2 cosðy=2ÞÞ.

qj (exact) qj (floating point) qj4
jpjj

�1/24 �0.4166666666666667e�1 �1.644934
�1/2880 �0.3472222222222222e�3 �1.082323
�1/181440 �0.5511463844797178e�5 �1.017343
�1/9676800 �0.1033399470899471e�6 �1.004077
�1/479001600 �0.2087675698786810e�8 �1.000995
�691/15692092416000 �0.4403491782239578e�10 �1.000246
�1/1046139494400 �0.9558954664774771e�12 �1.000061
�3617/170729965486080000 �0.2118550185201614e�13 �1.000015
�43867/91963695909076992000 �0.4770034475709914e�15 �1.000004
�174611/16057153253965824000000 �0.1087434349279031e�16 �1.000001
�77683/310224200866619719680000 �0.2504092194709195e�18 �1.000000
�236364091/40651779281561848066867200000 �0.5814360285755218e�20 �1.000000

rnoulli Lanczos–Krylov functions (‘‘Clausen functions”).

¼
P1

j¼1
ð�1Þnþ1

n cosðnxÞ
¼ logf2 cosðx=2Þg

¼
P1

j¼1
ð�1Þnþ1

n2 sinðnxÞ

 p logðpÞ � xþ ðx� pÞ logðp� xÞ þ

P1
j¼1qjfðx� pÞ2jþ1 � ð�pÞ2jþ1g=ð2jþ 1Þ

¼ �S2ð�xÞ; x < 0

¼
P1

j¼1
ð�1Þnþ1

n3 cosðnxÞ

 x2 3

4� 1
2 logðp� xÞ

� �
þ x p logðp� xÞ � 3

2 p
� �

þ p2

2 flogðpÞ � logðp� xÞg þ 0:90154267736969572

�
P1

j¼1qjfðx� pÞ2jþ2 � ð�pÞ2jþ2g=½ð2jþ 1Þð2jþ 2Þ�
¼ C3ðxÞ; x < 0

¼
P1

j¼1
ð�1Þnþ1

n4 sinðnxÞ

 11

36� 1
6 logðp� xÞ

� �
x3 þ p

2 logðp� xÞ � 11p
12

� �
x2 þ p2

36 ð7þ 6 logðpÞÞ þ 5p2

12 � p2

2 logðp� xÞ
n o

x

þ p3

6 ðlogðp� xÞ � logðpÞÞ � 0:06934963385x

�
P1

j¼1qjfðx� pÞ2jþ3 � ð�pÞ2jþ3g=½ð2jþ 1Þð2jþ 2Þð2jþ 3Þ�
¼ �S4ð�xÞ; x < 0
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4. An example: +‘

n¼1ð%1Þnþ1ð1=ðnþ kÞÞ cosðnxÞ

The function
Fig. 2.
spike in
vðx; kÞ �
X1
n¼1

ð�1Þnþ1 1
nþ k

cosðnxÞ ð29Þ
arises in physics [40]. Oleksy obtained good results even very close to the singularity by performing a series of exact trigo-
nometric transformations to create a sequence of new sums whose arguments zðxÞ are much farther from the singularity
than the argument x of the original series [40]. However, Oleksy’s method does not explicitly display the singularities as done
here.

Dillman and Grabitz [15], in treating Fourier–Bessel series for supersonic nozzle jets in fluid mechanics by ‘‘Kummer’s
method”, were required to evaluate vðx; kÞ for reasons similar to our LK functions here. They note that vðx; kÞ ¼
RðUðexpðixÞ; 1; kÞÞ where U is the ‘‘Lerch transcendent”:
Uðz; s; aÞ �
X1
n¼0

zn

ðnþ aÞs
; jzj < 1; a –� 1;�2; . . . ð30Þ
By using identities for the Lerch transcendent, Dillman and Grabitz were able to evaluate the sum explicitly, but only for the
special cases of k ¼ 1=4 and k ¼ 3=4.

To apply the LK functions to the series (29), note that
1
nþ k

¼ 1
n

1
1þ k=n

¼
X1
k¼1

ð�1Þk�1kk�1 1
nk
; ð31Þ
Then (6) becomes
vðx; kÞ ¼ sM þ
X1
k¼1

ð�kÞk�1fCkðxÞ � Ck;MðxÞg ð32Þ
where sM ¼
PM

n¼1ð�1Þnþ1ð1=ðnþ kÞÞ cosðnxÞ. Fig. 2 shows a typical example. Since exact values for vðx; kÞ are not known, we
summed 2000 terms using the x-dependent linear erfclog filter of [11] as the ‘‘benchmark”. The difference between the
benchmark and the LK sum is less than 10�10 over most of the interval.

There is a narrow zone near x ¼ p where the difference is large. This is not a fault of the LK method, but rather of the direct
summation. The function vðx; kÞ has logarithmic singularities at x ¼ �p. The direct sum, even with the use of a filter, cannot
approximate the infinity at x ¼ p. A logarithmic singularity is Gibbs Phenomenon with a vengeance! Even when the singu-
larity is merely a discontinuity, all filters fail sufficiently close to the singularity [45,46].

In contrast, the leading logarithmic singularity is captured by C1ðxÞ ¼ logð2 cosðx=2ÞÞ in the LK series, and weaker singu-
larities proportional to ðp� xÞk�1 logðp� xÞ are displayed with the correct multipliers by the higher CkðxÞ terms. Indeed, the
LK decomposition is not merely a way to numerically evaluate the series, but also is a means to classify and display the type of
singularity.
0 0.5 1 1.5 2 2.5 3
10-12

10-10

10-8

10-6

10-4

10-2

100

x

Comparisons with 50-term Fourier & 2000-term filtered Fourier

M=50  Fourier - Lanczos-Krylov (M=50)
Filtered Sum - Lanczos-Krylov(M=50)

Difference between vðx; kÞ for k ¼ 1=2 and the LK method using LK functions up to and including C4ðxÞ with the direct summation limit M ¼ 50. The
the difference at x ¼ p is due to the failure of the filter near the logarithmic singularity of vðx; kÞ; the LK method is accurate for all x.
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5. Summary and extensions

The Lanczos–Krylov singularity subtraction method [20] is restricted to piecewise analytic functions. Our procedure is
broader because it can cope with logarithmic endpoint singularities, too. Our example is one such function that has arisen
in physics. Most prior work has focused on using either discrete samples of f ðxÞ or the analytical form of the function to de-
duce the terms in the Fourier coefficient asymptotic approximation. Here, we have assumed that an analytical form for the
Fourier coefficients is already known, and devised a summation method that proceeds from this starting point.

Several obvious extensions are possible. If only numerical values for the Fourier coefficients are known, instead of an ana-
lytic formula, interpolation of the coefficients in powers of 1=n can supply the coefficients nk in (2).

A differential equation such as
uxx � u ¼ �f ðxÞ; uð0Þ ¼ uðpÞ ð33Þ
can be easily solved in series form by writing
f ðxÞ ¼
X1
n¼1

fn sinðnxÞ ! uðxÞ ¼
X1
n¼1

fn

1þ n2 sinðnxÞ ð34Þ
Unfortunately, if f ðxÞ is not a periodic function, then its Fourier series will converge as Oð1=nÞ, which removes much of the
charm from what otherwise is an appealingly simple strategy. However, the Fourier coefficient asymptotic expansion (15),
together with a geometric expansion of ð1=ð1þ n2Þwill furnish an approximation of the sine coefficients of uðxÞ in powers of
1=n, and then the LK series can be applied. For example, if f ðxÞ ¼ x! fn ¼ 2ð�1Þnþ1

=n, one finds that
uðxÞ ¼
XM

n¼1

2ð�1Þnþ1

nð1þ n2Þ � 2ð�1Þnþ1
XK

k¼1

ð�1Þk�1 1
n2kþ1

( )
sinðnxÞ þ 2

XK

k¼1

ð�1Þk�1S2kþ1ðxÞ þ O
1

ðM þ 1Þ2Kþ3

 !
ð35Þ
The principle is the same when f ðxÞ has a more complicated sine expansion.
The Lanczos–Krylov decomposition, even as generalized here, is not directly applicable to a Fourier series such as
rðxÞ ¼
X1
n¼1

ð�1Þnþ1 logðnÞ
1þ n2 cosðnxÞ ð36Þ
The logarithm in the Fourier coefficient implies that the singularity of rðxÞ at x ¼ �p is more complicated than a simple
derivative discontinuity or logðxÞ. However, if one can find a closed form solution for the simpler seriesP1

n¼1ð�1Þnþ1 logðnÞ
n2k cosðnxÞ, then one can define a new set of LK functions for this type of singularity, and the rest goes as before

[8].
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